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It is proposed to use the treatment of GTRARDEATU for the calculation of energies of unsat-
urated molecular systems. This involves a second quantized formalism with electron pair
basis functions. No strong orthogonality is assumed, instead a subsidiary condition is imposed
on the state vectors. However this does not involve any approximation. Information regarding
the ground and excited states can be obtained from various propagators. In order to determine
these propagators the Green function method of the many body problem can be used.

Es wird vorgeschlagen, Molekiile mit konjugierten Systemen nach einem Verfahren von
GIRARDEAU zu behandeln, das mit Geminalen ohne starke Orthogonalitdt arbeitet. Man kann
dabei die Greensche Funktion in der iiblichen Weise beniitzen.

Une théorie du type N-corps est formulée pour I'étude des molécules non-saturées avec
les effects de corrélation en utilisant un formalisme de GIRARDEAU avec une base de fonctions
de paires électroniques, ou on ne suppose pas ’orthogonalité forte, mais impose & la place une
condition sur les vecteurs d’état. Cependant ceci ne comporte ancune approximation. L’infor-
mation relative a I'état fondamental et aux états excités peut &tre obtenue & partir des diffé-
rents propagateurs. Ces propagateurs peuvent étre déterminés 4 'aide de la méthode de la
fonetion de Green du probléme & N corps.

1. Introduction

It is believed that an adequate way of treating two electron correlations could
give the bulk of correlation effects in atoms and molecules [15]. Besides Sinanoglu’s
many electron theory [17] the separated electron pair approach [12] yields a very
promising way to this problem. However this method in the present form suffers
from some defects:

a) the strong orthogonality condition (SOC) may limit the applicability of the
method ; (see however [13], and the recent numerical check [6]);

b) even under the SOC the actual calculations are very troublesome, hence this
method was applied only for very simple systems.

Present computing facilities do not allow even full Hartree-Fock calculations
for larger unsaturated molecules, hence an adequate treatment of the correlation
problem seems improbable here with these methods. However for these molecules
some semi-empirical methods (Hiickel, Pariser-Parr-Pople) became very useful. Tt
is a common feature of these methods that they are rather “many body methods”,
i.e. instead of detailed ‘“‘orbital calculations’ characteristic of the atomic Hartree-
Fock method they concentrate on the “combinatorial” aspects of the problem
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and the few parameters that should be obtained in principle from “orbital calcula-
tions™ are fitted in a semiempirical way. This is justified by the natural separa-
bility of the molecular problem, i.e. electronic repulsion and overlap integrals of
atomic orbitals sitting on nuclei far from each other are really small, ete. This
paper is an attempt to construct such a “many body theory” for conjugated
molecules in terms of not strong orthogonal electron-pair basis functions. The
introduction of such basis functions makes the problem rather involved as regards
permutation antisymmetry of the wave function. This was treated by Girar-
DEAU [9], and the second section of this paper is devoted to the summary of his
results. In Sec. 3 a Green’s function formalism is introduced similar to that of
LinperBerG and Omrx [14]. Various approximations are treated in sections 3
and 4 for various propagators and it is shown how to extract information from
their analytic structure. The self-consistency consitions are discussed in Sec. 5.
The last section is devoted to a discussion of applications, ete.

2. Second Quantized Formalism for Electron Pair Funtions

This section is devoted to a brief summary of Girardeau’s treatment of the
many body problem [9]. We shall restrict ourselves to the special case of expanding
the wave function in terms of electron pair functions. The Schrédinger equation of
the molecular system can be written within the framework of the Born-Oppen-
heimer approximation as (h = m, = ¢ = 1)

2n

HOE) = > — i+ Ul) + 5|0 ©) = B (&), (1)
=1 i<j i

where & = {z, %y, . ., Tyn}, ¥ = {F4, 01}, ryy = | i — 15 |. Now we shall introduce

a complete set of two electron functions {@.(;, z,)}, where x denotes the whole

system of quantum numbers characterizing the two electron function. These func-

tions have the properties

Pal@); Tpt1) = — a1, 71) 5
j‘]’f(xp xz) %3(‘”19 x2) dxl dxz = aaﬁ s (2)

>, @ul@y, @) P (@1, @) = F [0y — @7) Oy — 23) — Oy — wp) Oy — 21)]

and the suitable asymptotic behaviour.

Integration includes a summation over the spin indices, e.g. (%, — ) =
d(r, — 77) O5y0p- Using these completness and symmetry relations any wave func-
tion can be expanded as

D& = 3 oloa da...,on) gL (@1, 22) ¢F (%5, 24). . Q% (@an—, ¥2n) . (3)

{060 . on}

However the converse is not true, i.e. it is not true, that any expansion of the
form (3) represents a physical wave function. In order to satisfy the usual anti-
symmetry condition of @ (£), the following restriction should be imposed on the
coefficients ¢(ay, %gs. .+ Bn):

Z 2 <“‘i &3 l I I .3?’> c((xls X5 e o - Ki—1, ,B; Kfg1y s o oy K15 Vs Kf+1s0 » -“n) =

1<7 Br
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where the matrix element is defined as:

Lai o | I | By = j(p;’;(mh 2s) (p;‘fj(x& %) (s, Ta) Qy(®1, £4) day dag s dxg  (5)

and
e(Ggse e B s Ve ) = (&g e s Vo s Boe e, ) (6)
These coefficients can be regarded as a Fock space representation of the wave
function (see e.g. [10]). The Schrodinger equation can be transformed to this

representation in the usuwal way. Introducing creation and destruction operators
with boson commutation rules [cf. (6)]

[a’on aﬁ] = [G/I, a}] =0

[a/ot: a’g] = 60‘/3 ) (7)
we have the expression for the Hamiltonian
H=H,+ 7V, (8)

where
Hy= Zﬂ@@i%[ﬁﬂp

V=1%2alafaf |V |yd)a,as. 9)
afyd
The matrix elements are defined as

@ | BBy = [ gllen 20|~ 4, + 20() + | gl ) diy o,

N
4
{af3 I |4 ' y0> = Jv?’Z(xp Ts) 9”;;(933: 2,) 1_—13 Pal®y, %) Polts, 2,) day dwy dwg day

Sometimes U(r) means an effective core potential instead of the potential of
the nuclei. Thus we can treat the z-electron system separately. Otherwise we can
treat -7 interactions, bound-s interactions, etc.

Condition (4) can be written as

I|®Dy=—3nn—1)|D>,
where
I=%Jatd<of|I|yd)a,a.
afiyd

A generalized Hamiltonian will be defined as

H =H — /"N + AL,
where
N=3adla,
is the total number of electron pairs and y and 1 are Lagrange multipliers associated
with the conditions that any physical state must satisfy the equations
N|D>=n|D)>
I|®>=—3nn—1)|D).

We should diagonalize H in the Hilbert space of states with these conditions.
A generalized grand canonical ensemble will be introduced with the density
operator and grand partition function [§ = (7)1, k = Boltzmann’s constant)
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0= Zjebt
gg = lr e'ﬁ-# .
The thermodynamic potential is defined [1] as
—_ —;-ln z,.
Using this definition of W and the relation
0)=1tre0,
we have
a — —
W= n
2
N =— 3nmn—1). (10)

According to these conditions the thermodynamic potential should be calculated
using the undetermined constants 4 and A, and at the end of the calculation they
should be fixed from (10). Generally the limit § —oco will be performed. It can be
shown [16] that in this limit the average is over the state with the lowest energy,
hence “fluctuations’ in the generalized grand canonical ensemble are negligible.
Thus in this limit we have the average over the frue ground state when (10) holds.
Up to this point we have treated the problem in Schrédinger picture, e.g. the
coefficients in (3) were functions of the time variable. We can go to Dirac or
Heisenberg picture in the usual way, e.g. in the latter case
.0
? 5}' 0= [0, 4 ]
O(t) = ettt O(t=0) efst? (11)
ete.
3. Green‘s Functions. The “Hartree-Fock™ Approximation

Green’s functions are defined as averages of chronological products of operators.
The simplest one is
Gex, o' 5 8) = — i {Taalts) abi(ta)) (12)

where t = £, — t,’ (translation invariance in time is supposed). The Fourier trans-
form with respect to the time variable is

G, &' ) = jG(rx, o3 t) etot df . (13)

Proceeding in the usual way [19] the equation for the Green’s function is
(@ — &) Glor, o ; ) = par + 2. x| Hy | B> G(P, o' ; @) +
B#a
+ SKaB |V |0 T(Byd, &' ), (14)
Byd

where
o |V [y0y =B |V |98 +ALaf | I ]98>
gx = <o [ Ho | o) — o (15)

I'(Bys, &' 50) = — 4 j <Ta;§(t + 0) a,(t) as(t) als (0)) eiot dt .
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I'(Byd, &' ; w) can be determined from the two-particle Green’s function, the two-
particle Green’s function is connected with the three-particle Green’s function,
etc. This sequence of equations should be terminated by an appropriate decom-
position of higher Green’s functions into lower ones. The simplest decomposition
is a “‘Hartree-Fock’ approximation [16]
T(Byd, o' ; 0) = n(fy) G, «’; w) + n(Bd) Gly «’; w) , (16)
where
n(By) = <al(t) ay(t)) = iG(y, B; — 0) (17)
is independent of time.
Thus for the Green’s function we have the following inhomogeneous equation:

(w — &,) Gar (a0, ; @) — (zx{H [B> QB &' ) — a(oc/3|’1/|y6>n(ﬁy)x
x Gurd, o’; o) ﬁ% KaB | V" |y n(Bd) Guply, &' ; @) = Buar . (18)
"

Eq. (18) can be written as
(0 — &) Gurlx, o' ; @) — 5 Maw(x, 8) Gur(d, o'; ©) = daar (19)
5

and Myuyp(x, 0) is the mass operator [1] in the Hartree-Fock approximation. This
equation should be solved self-consistently together with conditions (10).
Using the Killen-Lehman spectral representation [7]

1
w+Bf-E—ic

(20)

Ol o's 0) = — 23 3 08 (@ |, | B O |0 |9

1
—~ (D | a | D7) <Py | al, [¢i>m )
where # | D7) = Ef |OF), and |D;) or |DF) is a complete set of states of the
neutral molecule and the twice ionized states. The operators should be taken at
time ¢ = 0. Suppose that the ground state of the molecular system [i.e. the state
with the lowest (free) energy and compatible with conditions (10)] is | Do), then
in the limit f — oo we have

’ 1
Gl o3 0) = 2B | al, |87 <BF | an | @) g -
_ _ 1
—<¢0|azx!¢j><¢7‘ RS e Ak )

Thus “quasi-boson’ electron pair energies are determined by the singularities of
G(«, &' ; w). These quasibosons are just the “independent” modes of electron pair
states. Of course in a real system these modes are interacting, i.e. there is a finite
imaginary part of the poles of the Green’s function [7], however experience
suggests that this picture does give a rather faithful description of physical systems.
Using the mnotations (@, |al |DF> =ci, {(D,|a. |D;> =d., the energies of
quasi-bosons can be determined from the homogeneous equatlons [8, 14]

(0 — &) €5 — > Mun(x, 8) ¢if =0 (22)
)
and
(0 —¢)di — 5 Muw(x,8)ds =0, (23)
P)
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ie. from the condition
| (0 — &4) 845 — Mur(x, 8) | =0. (24)
In order to determine Mgw(x, ), n(xf) should be known. Using (17) and (21)

do P
5= 2% i . (25)
7

=]
n(xf) = lim 4 J G(B, o; w) etiwe
a0
After having determined w = By — Ef or o = B — E, from (24), the coefficients
can be found from (22) and (23). In order to determine the complete solution of (19)
we should also determine the inhomogeneous solution. This is the condition
fixing the normalization of the solutions of (22) and (23). The following relation

can be valuable in this affair
Sdldl¥ — 3 d¥ = Suurs (26)
i i

which can be proved from the equal time commutator. Egs. (22) — (26) together
with the prescription for Muw(x, §) [c.f. (18) and (19)] constitute the basis for a
complete SCF calculation. Unfortunately this work can be very tedious, since a
great many off-diagonal elements of the Green’s function are needed. Of course
in an actual calculation we use only a restricted set of two electron basis functions.
This makes our mathematical scheme a finite dimensional one. The complexity of
the caleulational work can be further reduced if the mass operator is approximated
by

M(“a ﬁ) ~ Mmodel (0" ;3) + M,(‘x: ﬂ) ’ (27)
where Mmoger (¢, B) is fixed, and we make a SCF calculation in terms of a reduced
set of basis functions. This leads to various forms of s approximations. Note that
there might be a possibility to incorporate into Mmoger (o, f) the “exchange inter-
action’ as well as a certain amount of correlation effects. Under favourable condi-
tions this Mmoger (¢, f) should be transferable (within certain types of molecules).

4, Other Approximations. Excitation Spectrum

This section is devoted to the study of higher approximations to Eq. [14].
Although we feel, that within the framework of the ‘“Hartree-Fock” approxima-
tion described in the preceding section it is possible to take into account the bulk
of correlation, it is interesting to speculate about the possibility of including inter-
geminal correlations into our scheme. The Hamiltonian can be written as

H =Hy—uN+ ¥ = (Hy— pN + ¥ ur) + (¥ ~ ¥ &r), (28)
where
Vur= D al{a| ¥ ur|f az, (29)
B

is the “Hartree-Fock” potential. The matrix element is defined as

|V we | B = 5oy [ 77180+ <oy | 7| B] n)

The SCF procedure described in the preceding section diagonalizes the operator
{Hy — uN + ¥ gF), i.e. we have the equation

Gle, &' ; w) = Gupla, &' ; ) +pza Gar(x, B; ) By | 7" | 0> I'(yde, o’ ; w) —
- ISEGHF(“, ﬁ; m) <ﬁ | IV‘HF I 7> G(% (xl; a)) ’
v
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where Gur(x, & ; w) is the “unperturbed” Hartree-Fock propagator determined
in the previous section. The “fluctuation interaction” [17] as introduced above can
be treated e.g. in a perturbational way. The details of such a procedure will be
described elsewhere [5].

The next task is to describe excitation spectra. In the case of an unsaturated
molecule it is difficult to see excited states as composed of a ground state wave
function in which one spin-orbital is substituted by an excited one. Instead, the
system should be regarded, as a whole ie. excitation spectrum should be the
outcome of “collective” phenomena. Therefore we feel, that the energy differences
of the “Hartree-Fock™ geminals which can be determined from the solutions of
(24) cannot give a really satisfactory answer. In unsaturated systems the situation
is somewhat similar to that in nuclei (for a discussion of the situation in nuclei
see [18]).

Information about these “collective” phenomena can be extracted from the
two-particle Green’s function. In principle two-particle Green’s functions can be
determined from a Bethe-Salpeter equation [7], which can be derived in the usual
way also in the case of a molecular system. However a perturbational approach
(Random Phase Approximation) will be used here. This method was used [4] for
the treatment of plasmons in homogeneous electron gas, but the usefullness for
finite systems was pointed out too. [18, 2, 14, 3, 11] Within the RPA the unper-
turbated particle-hole propagator is

dw’
2n ’

s (o o5 @) = j Glex, o5 0) B, &' 0 + ) (30)

where G{(x, «’; w) should be inserted within an available approximation. The full
particle-hole propagator can be obtained within the RPA as

Qrpa (00, & ; ) =Q%pa (x, &'; 0)+ ﬁZQORPA (o, B; 0) LBy | 77| By> Qrea (7, &5 @) .
(31)

Execitation spectra can be obtained from the poles of Q(«, &'; ). In the homo-
geneous electron gas it is possible to determine the analytic structure explicitely
[4]. In a molecular system we must evaluate (30) and then determine the poles of
Q(x, &' ; w) from (31). This can be made by a similar procedure which was described
in the previous section, i.e. truncating (31) to a homogeneous equation and seeking
the conditions of nontrivial solutions. However we do not go into detail here in this
point.

5. Termodynamie Potential

After having discussed the calculation and information content of various
Green’s functions we go back to the problem of Lagrange multipliers. The values
of 4 and A should be determined from (10), therefore the construction of W is
needed. In the actual calculations we have concentrated on the limit § —co. It
can be proved [1, 16], that in this limit W = &, where

éa=<¢0]‘%]¢0>7
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ie. & is the generalized free energy. This can be determined from the one-particle
Green’s function in the following way [7]. The average of that part of 2# which is
bilinear in particle operators is

@y | H =y |00 =i 3 (o | H| B = pidos) G(py 3t = — 0) =

= 5 3] K Bl — ) 61p, 5 0) do =
=33 Ko | Hy | B — wbap) ol 52)
j o8

since the integration path can be closed with a semicircle on the upper half of the
o plane. Now using (12), (11) and the relations

Zal[Ho_;uN,azx]=“(H0":uN)

Zal['//a azx] = —2 V,
we have ’
<
Dy | D al [, a,] | Py = —<Dy | H— uN + 27" |Dp> = —@Z%G(a, %3 8) |t=—0

ie.

— (B, | Hy — MN+2V|@0>—~ZJ‘Goc,occo -3 3| Pas. ()
Here AE; = Ej — E, are the energies of the quasi-bosons as can be obtained from
the poles of the Green’s function [cf. (21)]. E,= &, however, only the energy
differences enter. This is the main advantage of Green’s function technique,

which makes the interpretation, incorporation of empirical data, ete. very easy.
From (32) and (33)

W=€=;[<¢0|H — U | @) + DBy | Hy — N + 29" | B3] =
E3 S o [ Hy |8 — duglps — AE)] (34)

This should be inserted into (10). Note, that ¢/ and AE; are functions of u, there-
fore

W, _ 1 i 2
L Ts
Of course on physical grounds
ow

A e DAL
7 &«

on

6. Discussion

In this paper a Green’s function technique using non strong orthogonal elec-
tron pair basis functions was studied for molecular systems. Like in every molecular
theory, where we have no explicitely diagonalized unperturbated Green’s function
with a complete basis system, we should perform the calculations with a finite set
of geminals made from atomic or Lowdin orbitals. This requires the diagonaliza-
tion of finite matrices. With the appropriate choice of basis functions we can treat
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“vertical” correlation, etc. We have not worried up to now about the various
interaction and exchange operator matrix elements given explicitely in the second
section. Since this techniques works with observable quantities it can be possible
to incorporate spectroscopical data in a similar way as described in [14], using
the concept of “molecules in molecules”. However, since the interpretation of
spectra is not clear, it can be more advantageous to make ab initio calculations on
smaller molecules or on model systems and then to incorporate the results of these
calculations. It can be imagined that after sufficient experience has been accu-
mulated about the best values of various matrix elements, Lagrange multipliers,

etc., a reasonable amount of work could be enough to treat correlations even in
larger molecules. '
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