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I t  is proposed to use the treatment of GIRARDEAU for the calculation of energies of unsat- 
urated molecular systems. This involves a second quantized formalism with electron pair 
basis functions. No strong orthogonality is assumed, instead a subsidiary condition is imposed 
on the state vectors. However this does not involve any approximation. Information regarding 
the ground and excited states can be obtained from various propagators. In order to determine 
these propagators the Green function method of the many body problem can be used. 

Es wird vorgeschlagen, Molekiile mit konjugierten Systemen nach einem Verfahren yon 
GraAX~DEAU ZU bchandeln, das mit Geminalcn ohnc starke Orthogonalitat arbeitet. Man kann 
dabei die Greensche Funktion in der iiblichen Weise beniitzen. 

Une th6orie du type N-corps est formul6e pour l'6tude des mol6cules non-satur6es avee 
les effects de corr61ation en utilisant un formalisme de GmARDEAV avec une base de fonctions 
de paircs 61ectroniques, ou on ne suppose pas l'orthogonalit6 forte, mais impose ~ la place une 
condition sur les vecteurs d'6tat. Cependant ceci ne comporte aucunc approximation. L'infor- 
marion relative ~ l'6tat fondamcntal et aux 6tats excit6s peut ~tre obtenue ~ partir des diff6- 
rents propagateurs. Ces propagateurs pcuvent ~tre d6termin6s a l'aide de la m6thode de la 
fonction de Green du problbme s N corps. 

1. I n t r o d u c t i o n  

I t  is be l ieved t h a t  an adequa t e  w a y  of t r ea t ing  two e lec t ron correlat ions could 
give the  bu lk  of  correla t ion effects in a toms  and  molecules [15]. Besides Sinano~lu 's  
m a n y  e lec t ron t h e o r y  [17] the  sepa ra t ed  e lect ron pa i r  app roach  [12] yields a ve ry  
promis ing  w a y  to  th is  problem.  However  th is  me thod  in the  presen t  form suffers 
f rom some defects :  

a) the  s t rong o r thogona l i ty  condi t ion  (SOC) m a y  l imi t  the  app l i cab i l i ty  of  the  
m e t h o d ;  (see however  [13], and  the  recent  numer ica l  check [6]); 

b) even under  the  SOC the  ac tua l  calculat ions are ve ry  t roublesome,  hence this  
m e t h o d  was app l ied  only  for ve ry  simple systems.  

P resen t  comput ing  facil i t ies do no t  al low even full  H a r t r e e - F o c k  calculat ions  
for  larger  u n s a t u r a t e d  molecules, hence an adequa te  t r e a t m e n t  of  the  corre la t ion  
p rob lem seems improbab le  here wi th  these methods .  However  for  these  molecules 
some semi-empir ica l  methods  (Hiiekel,  Pa r i se r -Par r -Pople )  became v e r y  useful. I t  
is a common fea ture  of  these  methods  t h a t  t h e y  are  r a the r  " m a n y  b o d y  me thods" ,  
i.e. i n s t ead  of  de ta i led  "o rb i t a l  ca lcula t ions"  character is t ic  of  the  a tomic  t t a r t r ee -  
F o c k  me thod  t h e y  concent ra te  on the  " comb ina to r i a l "  aspects  of  t he  p rob lem 
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and the few parameters tha t  should be obtained in principle from "orbital calcula- 
tions" are fitted in a semiempirical way. This is justified by the natural separa- 
bility of the molecular problem, i.e. electronic repulsion and overlap integrals of 
atomic orbitals sitting on nuclei far from each other are really small, etc. This 
paper is an at tempt  to construct such a "many body theory" for conjugated 
molecules in terms of not  strong orthogonal electron-pair basis functions. The 
introduction of such basis functions makes the problem rather involved as regards 
permutation antisymmetry of the wave function. This was treated by Gmcm- 
~ x ~  [9], and the second section of this paper is devoted to the summary of his 
results. In  See. 3 a Green's function formalism is introduced similar to tha t  of 
L~Dv,~BE~O and 0 H ~  [14]. Various approximations are treated in sections 3 
and 4 for various propagators and it  is shown how to extract  information from 
their analytic structure. The self-consistency consitions are discussed in Sec. 5. 
The last section is devoted to a discussion of applications, etc. 

2. Second Quantized Formalism for Electron Pair Funtions 

This section is devoted to a brief summary of Girardeau's t reatment of the 
many body problem [9]. We shall restrict ourselves to the special case of expanding 
the wave function in terms of electron pair functions. The Schr6dinger equation of 
the molecular system can be written within the framework of the Born-Oppen- 
heimer approximation as (h - m6 --- e = i) 

1 1 ~ ( ~ )  = L~=I - ~ ~ + U(r~)  ~<~ . , t  j 

where ~ = {x 1, x~ . . . . .  x2n }, x~ ---- {r~, ai}, r i y=  ]r i  -- r l  ]. Now we shall introduce 
a complete set of two electron functions { ~ ( x  1, x2)}, where ~ denotes the whole 
system of quantum numbers characterizing the two electron function. These func- 
tions have the properties 

~ (x j ,  xj+~) = - ~(x l+  1, xj) ,  

~ *(xl, x2) ~(x~, x2) dz~ dx~ - ~ ,  (2) 
5 ~ ( x ~ ,  * ' ' - - ' - ' x~) ~ .  (x~, x~) = ~ [~(xl x;) ~(x~ x2) ~(~1 - x~) ~(x~ - x~)] ,  

and the suitable asymptotic behaviour. 
Integration includes a summation over the spin indices, e.g. ~(x 1 - x ~ ) =  

O(r~ -- r~) ~ .  Using these completness and symmetry relations any wave func- 
tion can be expanded as 

(~) = 5 c(~1, ~ ,  ~ . )  ~(~) (x~, z~) ~ )  (x~, ~ ) . . . ~  ( ~ - ~ ,  z~.)  (3) 

However the converse is not true, i.e. i t  is not true, tha t  any expansion of the 
form (3) represents a physical wave function. In order to satisfy the usuM anti- 
symmetry condition of r (~), the following restriction should be imposed on the 
coefficients c(al, ~ . . . .  , c~): 

5 5 < ~  ~ I ~ I / ~ >  c ( ~ ,  ~ . . . .  ~ -~ , /~ ,  ~ + ~ , - . . ,  ~'~-~, r ,  ~+~  . . . .  ~ )  = 
i_</ ~r 

= - �89 n (~  - 1) c(~,~, ~,~ . . . .  , ~,~), (4) 
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where the  mat r ix  elemen~ is defined as : 

(~,~ aj l I l ~,> [v*,(xl, xp) * x ~-- ~Paj( ~, X4) ~Pfl(XS, Zp) ~0y(Xl, X4) dx  I d x  2 d x  3 d z  4 (5) 

and 
c(al,- �9 fl,. �9 y . . . . .  an) = + c(cq . . . . .  y . . . . .  ~ . . . . .  con). (6) 

These coefficients can be regarded as a Fock  space representat ion of  the wave 
function (see e.g. [10]). The SchrSdinger equation can be t ransformed to this 
representat ion in the usual way. In t roducing  creation and destruction operators 
with boson commuta t ion  rules [cf, (6)] 

[~, as] = [~i, ~ ]  = o 

[~0 4 ]  = ~ ,  (7) 
we have the expression for the Hamil tonian 

H = H0 + V,  (8) 
where 

V = 1 5 ar a~ <aft ] V 1~,c5) a r a~. ( 9 )  
afl7~ 

The matr ix  elements are defined as 

dxl dx~ 

'rl3 

Sometimes U(r) means an effective core potential  instead of  the potential  of  
the nuclei. Thus we can t reat  the ~-electron system separately. Otherwise we can 
t rea t  a-= interactions, bound-~ interactions, etc. 

Condition (4) can be wri t ten as 

where 

i =  ~ ~ ~ ' 4  <a~ 1 ~ [ ~> ~y~.  

A generalized Hamil tonian will be defined as 

~/F = H ~ N  + 21 ,  

w h e r e  

is the term number  of  electron pairs and ~ and 2 are Lagrange multipliers associated 
with the conditions tha t  any  physical state mus t  satisfy ~he equations 

I~> = _ �89 ~(~ - ~) [~>. 

We should diagonalize H in the Hflbert  space of  states with these conditions. 
A generalized grand canonical ensemble will be introduced with the densi ty  
opera ,or  and grand  p~r~ition ftmetion [fi = (kT) -~, k = Bol tzm~nn's  constant~ 
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~ g  = tr  e-aar . 

The thermodynamic potential is defined [l] as 

W = - ~ In ~ ' u .  

Using this definition of W and the relation 

( o ~  = tr q o ,  
we  h&ve 

a 
- - W =  - n  

w = -  �89 n(n - i ) .  (10) 

According to these conditions the thermodynamic potential should be e~leulated 
using the undetermined constants # and E, and at  the end of the calculation they 
should be fixed from (10). Generally the ]irni~ fl ~ c ~  will be performed. I t  can be 
shown [16] tha t  in this limit the average is over the state with the lowest energy, 
hence "fluctuations" in the generalized grand canonical ensemble are negligible. 
Thus in this Hrnit we have the average over the true ground state when (10) holds. 

Up to this point we h~ve treated the problem in SchrSdinger picture, e.g. the 
coefficients in (3) were functions of the t ime variable. We can go to Dirae or 
Iteisenberg picture in the usual w~y, e.g. in the lat ter  ease 

i L 0 = [0,  Ye] 
Ot 

O(t) = eOe~ O(t = O) eOe~ , ( i t )  

3. Green's Functions. The " H a r t r e e . F o c k "  Approximation 
Green's functions are defined as averages of chronological products of operators. 

The simplest one is 

where t = t~ - t#  (translation invariance in t ime is supposed). The Fourier trans- 
form with respeet to the t ime variable is 

G(o~, og ; 09) = ~ G(oc, o~' ; t) e ~ t  dt . (13) 
-CO 

Proceeding in the usual way [19] the equation for the Green's function is 

(co - ~ )  G(~, ~ ' ;~ )  = ~o~, + Z <~ I He I fl> G(fi, ~ ' ; ~ )  + 

flY6 
where 

O0 

-CO 

etc. 
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F(~yS, er ; r can be determined from the two-particle Green's function, the two- 
particle Green's function is connected with the three-particle Green's function, 
etc. This sequence of equations should be terminated by  an appropriate decom- 
position of higher Green's functions into lower ones. The simplest decomposition 
is a "Hartree-Fock" approximation [163 

F(flyS, er co) ~-- n(fiy) G(8, cr ~o) -k n(flS) G(7 a ' ;  co), (16) 

where 
~@,) = < a ~ ( t ) a ~ ( t ) >  = iG(~, 8; - 0) (17) 

is independent of time. 
Thus for the Green's function we have the following inhomogeneous equation: 

• G~r(8, ~ ' ; ~ ) -  Z < ~  ] r l~8>~(~8)G~r(r, ~ ' ;~)  = 8 . . . .  (is) 

Eq. (18) can be written as 

(a) -- s~) GHF(c~, c~'; ~o) -- ~ MH~(~, 8) G~F(8, ~'; co) = 8 . . . .  (19) 

and M~F(c~, 8) is the mass operator [i] in the Itartree-Fock approximation. This 
equation should be solved self-consistently together with conditions (10). 

Using the K/illen-Lehman spectral representation [7] 

G(cr od;co) = -- ~ x  ~ e.~E, <qS~la~,lqS+><qT)+lao, lei>o~+E+E_is 
] (20) 

where ~ f  I~5~> = E~ ]q}~), and ]r  or [~57> is a complete set of states of the 
neutral molecule and the twice ionized states. The operators should be taken at 
time t = 0. Suppose that  the ground state of the molecular system [i.e. the state 
with the lowest (free) energy and compatible with conditions (~0)] is [ ~bo>, then 
in the limit fl ~ c~ we have 

] (2i) 

Thus "quasi-boson" electron pair energies are determined by the singularities of 
G(~, 0r ; o)). These quasibosons are just the "independent" modes of electron pair 
states. Of course in a real system these modes are interacting, i.e. there is a finite 
imaginary part of the poles of the Green's function [7], however experience 
suggests that  this picture does give a rather faithful description of physical systems. 
Using the notations <q~0 I a~ [r = c~, (r  ] a~ [~5~> = d~, the energies of 
quasi-bosons can be determined from the homogeneous equations [8, 14] 

(~o -- e~) c~  -- ~ Mm~(~, 8) c~  = 0 (22) 

and 

(r - e~) d~ - ~ M~F(a, 8) d~ = 0 ,  (23) 
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i.e. from the condition 
I (~ - ~) ~o~ - l g ~ r ( ~ ,  #) [ = 0 .  (24) 

In order to determine MTrr(o~, fi), n(o~fl) should be known. Using (17) and (21) 
co 

n(afl) = lira i ~ G(# ~x ; (o) e + ~  
do) 

~-~+o .&~ 2~ ~j ~j ~* (25) 

After having determined co = E o -- E + or m = E~ - / g o  from (24), the coefficients 

can be found from (22) and (23). In order to determine the complete solution of (19) 
we should also determine the inhomogeneous solution. This is the condition 
fixing the normalization of the solutions of (22) and (23). The following relation 
can be valuable in this affair 

~ ~ d~:* - Z~{* ~--  ~ . . . .  (26) 
i i 

which can be proved from the equal time commutator. Eqs. (22) - (26) together 
with the prescription for M~r(~,  fl) [c.f. (18) and (~9)] constitute the basis for a 
complete SCF calculation. Unfortunately this work can be very tedious, since a 
great many off-diagonal elements of the Green's function are needed. Of course 
in an actual calculation we use only a restricted set of two electron basis functions. 
This makes our mathematical scheme a finite dimensional one. The complexity of 
the calculational work can be further reduced ff the mass operator is approximated 
by 

M(~, fl) ~= Mmode, (~, fl) + M'(cr fl), (27) 

where Mmodel (~,/~) is fixed, and we make a SCF calculation in terms of a reduced 
set of basis functions. This leads to various forms of ~r approximations, Note that  
there might be a possibility to incorporate into Mmodel (or #) the "exchange inter- 
action" as well as a certain amount  of correlation effects. Under favourable condi- 
tions this Mmo~e~ (or #) should be transferable (within certain types of molecules). 

4. Other Approximations. Excitation Spectrum 
This section is devoted to the s tudy of higher approximations to Eq. [14]. 

Although we feel, tha t  within the framework of the "Hartree-Foek" approxima- 
tion described in the preceding section it is possible to take into account the bulk 
of correlation, it  is interesting to speculate about the possibility of including inter- 
geminal correlations into our scheme. The Hamiltonian can be written as 

= Ho - ~ v  + r  = (H0 - ~ V  + r + (r - CZar),  (2S) 
where 

r  = ~ ~ <~ I ~ r  I#> ~p, (29) 

is the "Hartree.Foek" potential. The matrix element is defined as 

y6 

The SCF procedure described in the preceding section diagonalizes the operator 
(H o -- ~tN + ~HF),  i.e. we have the equation 

G(~, ~'; ~) = ~ F ( ~ ,  ~'; ~) + Y ~Er(~ ,  #; ~) <& I w ] ~ >  ~ (r&,  ~'; ~) - 
~y~e 

#r 
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where GHF(~, 0~'; CO) is the "unperturbed" Hartree-Fock propagator determined 
in the previous section. The "fluctuation interaction" [i7] as introduced above can 
be treated e.g. in a perturbational way. The details of such a procedure will be 
described elsewhere [5]. 

The next  task is to describe excitation spectra. In the case of an unsaturated 
molecule it is difficult to see excited states as composed of a ground state wave 
function in which one spin-orbital is substituted by an excited one. Instead, the 
system should be regarded, as a whole i.e. excitation spectrum should be the 
outcome of "collective" phenomena. Therefore we feel, that  the energy differences 
of the "Hartree-Fock" geminals which can be determined from the solutions of 
(24) cannot give a really satisfactory answer. In unsaturated systems the situation 
is somewhat similar to tha t  in nuclei (for a discussion of the situation in nuclei 
see [i8]). 

Information about these "collective" phenomena can be extracted from the 
two-particle Green's function. In principle two-particle Green's functions can be 
determined from a Bethe-Salpeter equation [7], which can be derived in the usual 
way also in the case of a molecular system. However a perturbational approach 
(Random Phase Approximation) will be used here. This method was used [4] for 
the treatment of plasmons in homogeneous electron gas, but the usefullness for 
finite systems was pointed out too. [i8, 2, 14, 3, l i ]  Within the RPA the unper- 
turbated particle-hole propagator is 

(3O 

Q~PA (a, ~';  o~) = G(~, ~ ; ~o') G(c~, ~';  co + w') 2z ' (30) 
-CO 

where G(c~, cr ; w) should be inserted within an available approximation. The full 
particle-hole propagator can be obtained within the RPA as 

QRPA (~, ~';  e0) = Q~PA (O~, ~'; CO) + ~ Q~PA (~, t ;  ~o) (fl~ 1 Y/" ] fl~) Q~PA (Y, ~'; w).  
~r 

(31) 

Excitation spectra can be obtained ~rom the poles of Q(~, ~'; w). In the homo- 
geneous electron gas it  is possible to determine the analytic structure explicitely 
[4]. In a molecular system we must evaluate (30) and then determine the poles of 
Q(cr ~';  w) from (31). This can be made by a similar procedure which was described 
in the previous section, i.e. truncating (31) to a homogeneous equation and seeking 
the conditions of nontrivial solutions. However we do not go into detail here in this 
point. 

5. Termodynamic Potential 

After having discussed the calculation and information content oi various 
Green's functions we go back to the problem of Lagrange multipliers. The values 
of # and ~ should be determined from (10), therefore the construction of W is 
needed. In the actual calculations we have concentrated on the limit fl -~ co. I t  
can be proved [l, 16], tha t  in this limit W = d ~, where 
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i.e. # is the generalized free energy. This can be determined from the one-particle 
Green's function in the following way [7]. The average of that  part  of 5/z which is 
bflinear in particle operators is 

(+0 1 H - ~ N  1 r  = i 5 ( (~  I H 1 8 )  -- ~=~)  a(~,  ~;  t = - 0) = 

c o  

= 5 5 ( (~  I B0 I Z> - ~ . z )  ~. v , (32) 

since the integration path can be closed with a semicircle on the upper half of the 
~o plane. Now using (12), ( t l )  and the relations 

5 a~[go - ~;v,  a~] = - (g0 - ~ N )  
6r 

we have 
�9 d 

(~o I ~ a~ t [ ~176 aa] l qbo} = -- (q~o I H -- fiN ~- 2r l~bo} = - *5  - -  G(a, 6r ; t) It=-o 
c, ~, d t  ' 

i.e. 
o o  

~ d~o i l 2 A E  J (33) - (+o  I Bo - ~ U  + ~ I~o~ = a(~ ,  ~;  ~ )  ~ ~ = ~ ~ ! ~ �9 

Here A E  1 = E + - E o are the energies of the quasi-bosons as can be obtained from 
the poles of the Green's function [ef. (21)]. E0-~ 5 ~, however, only the energy 
differences enter. This is the main advantage of Green's function technique, 
which makes the interpretation, incorporation of empirical data, etc. very easy. 

Prom (32) and (33) 

w -- ~ -- �89 [<+o I Ho - / r  1+o> + <~o ] Ho - ~ N  + ~ Ir = 
= �89 ~ 5 ~': ~i* [(~ [ ~ o  I ~> -- ~ , ( ~  -- AE~)] .  (3~) 

This should be inserted into (~0). Note, tha t  c~ and zJE 1 are functions of/z, there- 
fore 

0W "[2 

Of course on physical grounds 

6.  D i s c u s s i o n  

In  this paper a Green's function technique using non strong orthogonal elec- 
tron pair basis functions was studied for molecular systems�9 Like in every molecular 
theory, where we have no explieitely diagonalized nnperturbated Green's function 
with a complete basis system, we should perform the calculations with a finite set 
of gemlnals made from atomic or L5wdin orbitals. This requires the diagonaliza- 
tion of finite matrices. With the appropriate choice of basis functions we can treat  
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"ve r t i ca l "  correlat ion,  etc. W e  have  no t  worr ied  up  to  now a b o u t  the  var ious  
in te rac t ion  and  exchange opera to r  m a t r i x  e lements  given expl ic i te ly  in the  second 
section. Since this  techniques  works  wi th  observable  quant i t i es  i t  can be possible 
to  incorpora te  speetroscopical  d a t a  in  a s imilar  w a y  as descr ibed in [14], us ing 
the  concept  of  "molecules  in  molecules".  However ,  since the  i n t e r p r e t a t i o n  of  
spec t ra  is no t  clear, i t  can be more advan tageous  to  make  ab  ini t io  calculat ions  on 
smal ler  molecules or on model  sys tems and  then  to  incorpora te  the  resul ts  of  these  
calculat ions.  I t  can be imagined  t h a t  af ter  sufficient experience has  been accu- 
m u l a t e d  abou t  the  bes t  values  of  var ious  m a t r i x  elements ,  Lagrange  mult ipl iers ,  
etc.,  a reasonable  a m o u n t  of  work  could be enough to t r e a t  correla t ions  even in 
larger  molecules. 
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References  

1. BONCH-BI%uEVICH, V. L., and 8. V. TYABLIKOV: The Green's function method in statistical 
mechanics. Amsterdam: North-Holland 1962. 

2. BRANDT, W., and S. LUlVDQUIST: Physic. Rev. 132, 2135 (1963). 
3. BROWN, G. E. : Lectures on many-body problems. Copenhagen: Nordita 1961. 
4. Dv BoIs, D. V.: Ann. Phys. 7, t74; 8, 24 (1959). 
5. BOTI, GY. : To be published. 
6. EBBING, D. D., and L. E. POPLAWSKI: J. chem. Physics 45, 2657 (1966). 
7. GALrrsKrl, V., and A. MIGDAL: Soviet Physics JETP 7, 96 (1958). 
8. GELL-MAI~I% M., and 1 ~. Low: Physic. Rev. 84, 350 (i95i). 
9. GIRARD~AV, M. : J. math. Physics 4, 1096 (1963). 

10. GOMBAS, P.: Theorie und LSsungsmethoden des Mehrteilehenproblems der Wellen- 
mechanik. Basel: Birkh&user, 1950. 

t i .  HERZENBERG, A., D. 8HERRI!VGTO!% and i~[. Si~VEGES: Proc. physic. Soc. (London) 84, 465 
(t964). 

12. H~RLEu A. C., J. E. LENNARD-JoNws, and J. A. POPLE: Proc. Roy. Soc. (London) A220, 
446 (1953). 

13. KAPvY, E.: Theoret. chim. Acta 6, 281 (1966). 
14. Lr~DE~BE~O, J., and u  0mr Proc. Roy. Soe. (London) A285, 445 (1965). 
t5. L(iwDI~, P. O.: Advan. chem. Physics 2, 207 (1959). 
t6. MARTnV, P. C., and J. S e ~ o E R :  Physic. Rev. 115, 1342 (1959). 
17. SrsA~o~Lv, O.: Proc. Natl. Acad. Sci. U.S. 47, 1217 (1961). 
18. THOULESS, D. J. :  l~uc]. Physics 22, 78 (1961). 
19. ZVB~EV, D. N.: Soviet Physics, USP 3, 320 (1960). 

Dr. Gr. B~TI 
Research Group for Theoretical Physics 
The Hungarian Academy of Sciences 
XI. Budafoki ut  8 
Budapest, Hungary 


